

○ 치환 적분과 부분 적분 ○

⇒ 앞에 배웠던 적분법은 공식적인 것이나 관용적인 것이었나면 지금 배울 치환적분과 부분적분은 어떤 적분 스킬에 관한 이론이야 실제로 적분법은 지금도 연구중이지만 앞으로도 무한히 연구가 될거야 앞으로도 새로운 적분법이 계속 나오겠지

(1) 치환 적분법

 \Rightarrow 말 그대로 식을 t로 치환한다음 적분 변수도 t로 나타내서 t에 관한 함수와 변수의 적분을 한다는거야 물론 부정 적분에서는 적분하고 난 다음 원래 치환되기 전의 변수로 바꿔서 완료를 해야 해

그럼 도대체 무엇을 치환할까? 이것은 한마디로 말하면 어떤식을 미분했을 때 도함수식이 있으면 그 어떤 식을 치환 하는거야

그 어떤 식을 "내 물건", 도함수 식을 "믿을 만한 친구"이라고 하고 치환 하는것을 "물건을 맡긴다"고 한다면 믿을 만한 친구가 있을 때 내 물건을 맡길수가 있는거지

그니깐 물건(어떤식)을 맡기려면(치환하려면) 믿을만한 친구 (어떤식의 도함수)가 있어야 해

치환하고 난다음에 이전에 배웠던 음함수 미분법이론이 들어가는데 $x^2 - 2xy + y^2 - 3 = 0$ 이것을 음함수 미분법으로 했을때

 $\Rightarrow 2x (dx) - 2 (dx)y - 2x (dy) + 2y (dy) = (2x - 2)dx - (2x - 2y)dy = 0$ 이런 식으로 한다음에 $\frac{dy}{dx}$ 를 구했을까야 이 방식을 치환적분에서 사용해

$$ex$$
) $\int x \sqrt{x^2+1} dx$

 \Rightarrow 지금 보면 $(x^2+1)'=2x$ 로 미분한 식이 위에 존재하지 (x지만 $\frac{1}{2}(2x)$ 형태로 나타낼 수 있어) 그럼 이 x가 믿을만한 애니깐 (x^2+1) (내물건)을 치환(맡길수)할 수 있어

 $x^2+1=t$, 이 상태에서 음함수 미분법을 하는거야 $2x\,dx=dt$ 그러면 $x\,dx=\frac{1}{2}dt$ 가되지 이 식을 위의 식에 그대로 대입하면

$$\int x \sqrt{x^2 + 1} \, dx = \int \frac{1}{2} \sqrt{t} \, dt = \frac{1}{2} \times \frac{2}{3} t \sqrt{t} + C$$
$$= \frac{1}{3} (x^2 + 1) \sqrt{(x^2 + 1)} + C$$

$$ex) \int x \sqrt{x+1} dx$$

 \Rightarrow 밑을 만한 애가 없어보이지만 보통은 $\sqrt{}$ 포함된 식의 치환적분은 $\sqrt{}$ 전체를 치환하는거야

 $\sqrt{x+1}=t$ 로 치환하면 $x+1=t^2$ 이되고 이상태에서 미분하면 $dx=2t\,dt\,,$ 그리고 $x=t^2-1$ 이 되지

$$\int x \sqrt{x+1} \ dx = \int (t^2 - 1)t \ (2t) dt = 2 \int (t^4 - t^2) dt$$

$$= 2\left(\frac{1}{5}t^5 - \frac{1}{3}t^3\right) + C = \frac{2}{5}(x+1)^2\sqrt{x+1} - \frac{2}{3}(x+1)\sqrt{x+1} + C$$

$$ex) \int \tan x = \int \frac{\sin x}{\cos x} dx$$

 \Rightarrow 이것은 $\cos x=t$ 로 치환 해야 돼 자칫 $\sin x=t$ 로 치환하면 $\cos x$ 가 도함수인데 식에서는 $\frac{1}{\cos x}$ 가 있는거지 $\cos x$ 는 없는거야 주의!! $\cos x=t$, $-\sin x\,dx=dt$, $\sin x\,dx=-dt$

$$\int \tan x = \int \frac{\sin x}{\cos x} dx = -\int \frac{1}{t} dt = -\ln|t| + C$$
$$= -\ln|\cos x| + C$$

$$ex) \int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{1}{t} \, dt = \ln|t| + C$$
$$= \ln|\sin x| + C$$

$$\Rightarrow \sin x = t, \quad \cos x \, dx = dt$$

$$cf$$
) $\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$ 와 $\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx$ 늘

 $\int \frac{f'(x)}{f(x)} dx$ 유형인데 항상 분모인 f(x) = t 로 치환해서 분수함수의 \ln 적분을 이용하기 때문에 결론을 외워두는게 좋아

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

이것과 세트로 하나 더 외울게

$$\int f(x) f'(x) dx$$
 야 이것도 $f(x) = t$ 로 치환하면 $f'(x) dx = dt$ 라서

$$\int f(x) f'(x) dx = \int t dt = \frac{1}{2} t^2 + C = \frac{1}{2} \{f(x)\}^2 + C$$

≪ 안녕맨이 이과 부정적분에서 반드시 외우라고 하는 8정리 소개할게≫

①
$$\int \sqrt{x} \ dx = \frac{2}{3} x \sqrt{x} + C$$
 ② $\int \frac{1}{x^2} dx = -\frac{1}{x} + C$

$$\oint \ln (x+a) dx = (x+a) \ln (x+a) - x + C$$

$$ex) \int \sin^3 x \, dx, \qquad \int \cos^3 x \, dx, \qquad \int \tan^3 x \, dx$$

$$\Rightarrow \int \sin^2 x \, dx, \qquad \int \cos^2 x \, dx, \qquad \int \tan^2 x \, dx$$
 은 계산 배웠지ㅎ

$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2} x - \frac{1}{4} \sin 2x + C$$

$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} x + \frac{1}{4} \sin 2x + C$$

$$\int \tan^2 x \, dx = \int (\sec^2 x - 1) dx = \tan x - x + C$$

①
$$\int \sin^3 x \, dx = \int \sin x \sin^2 x \, dx = \int \sin x (1 - \cos^2 x) \, dx$$
 에서 $\cos x = t \,$ 로 치환 $-\sin x \, dx = dt$, $\sin x \, dx = -dt$ $\int \sin x (1 - \cos^2 x) \, dx = \int -(1 - t^2) dt = \int (t^2 - 1) \, dt$ $= \frac{1}{2} t^3 - t + C = \frac{1}{2} \cos^3 x - \cos x + C$

②
$$\int \cos^3 x \, dx = \int \cos x \cos^2 x \, dx = \int \cos x (1 - \sin^2 x) \, dx$$
 에서 $\sin x = t \,$ 로 치환 $\cos x \, dx = dt$, $\int \cos x (1 - \sin^2 x) \, dx = \int (1 - t^2) dt = t - \frac{1}{3} t^3 + C$ $= \sin x - \frac{1}{3} \sin^3 x + C$

③
$$\int \tan^3 x \, dx = \int \tan x \, \tan^2 x \, dx = \int \tan x \, (\sec^2 x - 1) \, dx$$

$$= \int (\tan x \, \sec^2 x - \tan x) \, dx = \int \tan x \, \sec^2 x \, dx - \int \tan x \, dx \, \text{에서}$$

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{(-\sin x)}{\cos x} \, dx = -\ln|\cos x| + C$$

$$\int \tan x \, \sec^2 x \, dx \, \text{에서} \quad \tan x = t \, \exists \, \text{치환} \quad \sec^2 x \, dx = dt$$

$$\int \tan x \, \sec^2 x \, dx = \int t \, dt = \frac{1}{2} t^2 + C = \frac{1}{2} \tan^2 x + C$$

$$ex) \int \sec x \, dx = \int \frac{1}{\cos x} \, dx$$
 \Rightarrow $\int \csc x \, dx = \int \frac{1}{\sin x} \, dx$

 $\sin x = t$ 로 치환 하면, $\cos x \, dx = dt$

$$\int \frac{\cos x}{1-\sin^2 x} \, dx = \int \frac{1}{1-t^2} \, dt = -\int \frac{1}{(t-1)(t+1)} \, dt$$

$$= -\frac{1}{2} \int \left(\frac{1}{t-1} - \frac{1}{t+1} \right) dt = -\frac{1}{2} \left\{ \ln|t-1| - \ln|t+1| \right\} + C$$

$$= -\frac{1}{2} \left\{ \ln \left| \frac{t-1}{t+1} \right| \right\} + C = -\frac{1}{2} \left\{ \ln \left| \frac{\sin x - 1}{\sin x + 1} \right| \right\} + C$$

$$2\int \csc x \, dx = \int \frac{1}{\sin x} \, dx = \int \frac{\sin x}{\sin^2 x} \, dx = \int \frac{\sin x}{1 - \cos^2 x} \, dx \, \text{and} \, x$$

 $\cos x = t$ 로 치환 하면, $-\sin x \, dx = dt$, $\sin x \, dx = -dt$

$$\int \frac{\sin x}{1-\cos^2 x} \, dx = \int \frac{-1}{1-t^2} \, dt = \int \frac{1}{(t-1)(t+1)} \, dt$$

$$= \frac{1}{2} \int \left(\frac{1}{t-1} - \frac{1}{t+1} \right) dt = \frac{1}{2} \left\{ \ln|t-1| - \ln|t+1| \right\} + C$$

$$= \ \frac{1}{2} \ \{ \ln | \, \frac{t-1}{t+1} \, | \} \ + \ C \ = \ \frac{1}{2} \ \{ \ln | \, \frac{\cos \! x - 1}{\cos \! x + 1} \, | \} \ + \ C$$

$$\frac{1}{2} \left\{ \ln \left| \frac{1 - \cos x}{1 + \cos x} \right| \right\} + C = \frac{1}{2} \left\{ \ln \left| \tan^2 \frac{x}{2} \right| \right\} + C = \ln \left| \tan \frac{x}{2} \right| + C$$

(별해)

$$\star \int \csc x \, dx = \int \frac{1}{\sin x} \, dx = \int \frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \, dx = \int \frac{\frac{1}{\cos^2 \frac{x}{2}}}{\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2}}} \, dx$$

$$= \frac{1}{2} \int \frac{\sec^2 \frac{x}{2}}{\tan \frac{x}{2}} dx \quad \text{에서 } \tan \frac{x}{2} = t \quad \text{로 치환하면}$$

$$\frac{1}{2} \sec^2 \frac{x}{2} dx = dt, \quad \sec^2 \frac{x}{2} dx = 2dt \quad \text{이므로}$$

$$= \frac{1}{2} \int \frac{2}{t} dt = \ln|t| = \ln|\tan \frac{x}{2}| + C$$

$$ex) \int \frac{1-e^x}{1+e^x} dx$$

$$\Rightarrow e^x$$
 가 포함된 분수식은 무조건 $e^x = t$ 를 치환 해 $e^x = t$ 에서 $e^x dx = dt$, $t dx = dt$, $dx = \frac{1}{t} dt$ 이렇게 항상 돼 $\int \frac{1-e^x}{1+e^x} dx = \int \frac{1-t}{1+t} \times \frac{1}{t} dt = \int \frac{1-t}{(1+t)t} dt$ 에서

$$\frac{1-t}{(1+t)t} = \frac{a}{1+t} + \frac{b}{t}$$
로 나타낼 수 있지(항등식 이용)

$$\frac{a}{1+t} + \frac{b}{t} = \frac{(a+b)t+b}{(1+t)t} \text{ on } a+b = -1, b=1, \therefore a = -2$$

$$\therefore \int \frac{1-t}{(1+t)t} dt = \int \left(\frac{-2}{1+t} + \frac{1}{t}\right) dt = -2\ln|t+2| + \ln|t| + C$$

$$= \ln\left|\frac{t}{(t+2)^2}\right| + C = \ln\left|\frac{e^x}{(e^x+2)^2}\right| + C$$

$$ex$$
) $\int \frac{\ln x}{x} dx$

$$\Rightarrow$$
 여기서는 $lnx = t$ 로 치환해 $\frac{1}{x}dx = dt$

$$\int \frac{\ln x}{x} dx = \int t dt = \frac{1}{2} t^2 + C = \frac{1}{2} (\ln x)^2 + C$$

ex) 삼각함수 분수식 무조건 푸는 방법

$$\int \frac{2\sin x - \cos x}{\sin x + 2\cos x} dx = \int \frac{a f(x) + b f'(x)}{f(x)} dx = \int (a + b \frac{f'(x)}{f(x)}) dx$$
$$= ax + b \ln |f(x)| + C = ax + b \ln |\sin x| + 2\cos x + C$$

⇒ 분모인 $\sin x + 2\cos x = f(x)$ 라 할 때, 분자인 $2\sin x - \cos x = af(x) + bf'(x)$ 로 둘 수 있다면 위의 식처럼 a, b만 구할 수 있다면 무조건 부정적분이 $ax + b \ln |f(x)| + C$ 가 되는 거야 그리고 이것은 항등식이니깐 금방 구할 수 있어 $2\sin x - \cos x = af(x) + bf'(x) = a(\sin x + 2\cos x) + b(\cos x - 2\sin x)$ $= (a-2b)\sin x + (2a+b)\cos x$ 에서

$$\int \frac{2\sin x - \cos x}{\sin x + 2\cos x} dx = a x + b \left| \ln \sin x + 2\cos x \right| + C$$
$$= -\left| \ln \sin x + 2\cos x \right| + C$$

a-2b = 2, 2a+b = -1 연립하면 b = -1, a = 0

cf) 결론을 외우지 말고 모든 삼각함수 분수식은 $\frac{a \, f(x) \, + b \, f^{\, \prime}(x)}{f(x)} \ \,$ 형태로 둘 수 있다고 생각하면 돼ㅎ

ex) 삼각 치환 적분법

⇒ x를 삼각 함수로 치환하는 치환적분법이야이건 특정한 경우에만 돼 다음 두가지 예가 대표적인 경우야

 $\Rightarrow x = a \sin \theta$ 로 치환하면 $dx = a \cos \theta d\theta$

$$\int \sqrt{a^2 - x^2} \, dx = \int \sqrt{a^2 - a^2 \sin^2 \theta} \times a \cos \theta \, d\theta$$

$$= \int \sqrt{a^2(1-\sin^2\theta)} \times a\cos\theta \ d\theta = \int \sqrt{a^2\cos^2\theta} \times a\cos\theta \ d\theta$$

$$= \int a^2 \cos^2 \theta \, d\theta = a^2 \int \frac{1 + \cos 2\theta}{2} \, d\theta = a^2 \left(\frac{1}{2} \, \theta + \frac{1}{4} \sin 2\theta \right) + C$$

 $\Rightarrow x = a \tan \theta$ 로 치환하면 $dx = a \sec^2 \theta d\theta$

$$\int \frac{1}{a^2 + x^2} dx = \int \frac{1}{a^2 + a^2 \tan^2 \theta} \times a \sec^2 \theta d\theta$$

$$= \int \frac{1}{a^2(1+\tan^2\theta)} \times a \sec^2\theta \, d\theta = \int \frac{1}{a^2 \sec^2\theta} \times a \sec^2\theta \, d\theta$$

$$= \int \frac{1}{a} d\theta = \frac{1}{a} \theta + C$$

③
$$\tan \frac{x}{2} = t$$
 로 치환하는 치환적분

⇒ 10 강 삼각함수 2 에서 배웠던 것 중에

$$\tan\frac{x}{2} = t$$
 일 때, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$, $\tan \theta = \frac{2t}{1-t^2}$ 있었지

위의 공식을 이용해서 $\tan\frac{x}{2}=t$ 로 치환하면 삼각함수 적분을 t에 관한 분수함수 적분으로 바꿀 수 있고 이건 결국 삼각함수를 분수 함수로 풀겠다는 거지ㅎ

$$(ex) \int \frac{1}{\sin x + 1} dx$$

$$\Rightarrow \tan \frac{x}{2} = t$$
 로 치환하면 $\frac{1}{2} \sec^2 \frac{x}{2} dx = dt$ 가 되고 $= \frac{1}{2} (\tan^2 \frac{x}{2} + 1) dx = \frac{1}{2} (t^2 + 1) dx = dt$, $\therefore dx = \frac{2}{t^2 + 1} dt$ 위 식에 $\sin x = \frac{2t}{1 + t^2}$, $dx = \frac{2}{t^2 + 1} dt$ 를 대입하면 돼

$$\int \frac{1}{\sin x + 1} dx = \int \frac{1}{\frac{2t}{1 + t^2} + 1} \times \frac{2}{t^2 + 1} dt = \int \frac{1 + t^2}{2t + 1 + t^2} \times \frac{2}{t^2 + 1} dt$$

$$= \int \frac{2}{(t+1)^2} dt = -\frac{2}{t+1} + C = -\frac{2}{\tan\frac{x}{2} + 1} + C$$

(2) 부분 적분법

⇒ 부분 적분법은 보통 성질이 다른 두 함수의 곱으로 되어있는 함수의 적분을 할때 써

$$\int x \sin x \, dx, \qquad \int e^x \cos x \, dx, \qquad \int e^x \ln x \, dx, \quad \stackrel{\leftarrow}{\circ} \quad \stackrel{\leftarrow}{\circ}$$

$$\Rightarrow (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$
 에서

f(x) g'(x) = (f(x)g(x))' - f'(x)g(x) 이 상태에서 양변을 적분하면

$$\int f(x) g'(x) dx = \int (f(x)g(x))' dx - \int f'(x)g(x) dx + C$$
$$= f(x)g(x) - \int f'(x)g(x) dx + C$$
(원래 그놈) - $\int (반대되는놈)$

cf) 실제 문제를 풀때는 식을 간단히 하기 위해서

$$\int v'u \, dx = vu(원래그놈) - \int v \, u'(반대되는놈) dx + C 로 풀어$$

그리고 어떤걸 v'로 놓을지 u로 놓을지를 결정해야 하는데 상식적으로 v'로 놓았다면 v를 구하기 위해서 적분을 해야 하자나 그래서 적분이 쉬운쪽을 v'로 놓지

적분 쉬운 순서대로 나열 해 보면

지수 함수, 삼각 함수, 다항 함수, 로그 함수 순이지

이 순서대로 v'을 놓고 나머지 함수를 u로 놓고 풀면돼

u는 아무거나 놓아도 u'은 구하기 쉬우니깐 어떤걸 v'로 놓느냐면 중요해 \circ

보통 앞 글자만 따서 "지!! 삼!! 다!! 로!!"이렇게 외워ㅎ

$$ex)\int x\,e^x\,dx$$
 : 지삼다로 e^x (지수함수) = v' , $v=e^x$
$$x\,(다항함수) = u\,,\quad u'=1$$
 = (원래 그놈) $-\int (반대되는놈) = x\,e^x - \int e^x\,dx = x\,e^x - e^x + C$

$$ex)\int \ln x\,dx$$
 : 지삼다로 1 (다항함수) $=v',\quad v=x$
$$\ln x\,(로그함수)=u\,,\quad u'=\frac{1}{x}$$
 $=$ (원래 그놈) $-\int \left(\text{반대되는놈}\right)=x\ln x\,-\int x\times\frac{1}{x}dx$ $=x\ln x\,-x\,+\,C$

$$ex)\int \ln{(x+a)}\,dx$$
 : 지삼다로 $1(다항함수) = v', \quad v = x$
$$\ln{(x+a)}\,(로그함수) = u\,, \quad u' = \frac{1}{x+a}$$

$$= (원래 그놈) - \int{(반대되는놈)} = x\ln{(x+a)} - \int{\frac{x}{x+a}}\,dx$$

$$= x\ln{(x+a)} - \int{(1-\frac{a}{x+a})}\,dx$$

$$= x\ln{(x+a)} - x + a\ln{(x+a)} + C$$

$$= (x+a)\ln{(x+a)} - x + C$$

$$ex$$
) $\int e^x \sin x \, dx$: 지 삼 다 로 $v' = e^x$ (지수함수), $v = e^x$ $u = \sin x$ (삼각함수), $u' = \cos x$ $=$ (원래 그놈) $-\int$ (반대되는놈) $=e^x \sin x - \int e^x \cos x \, dx$

여기서
$$\int e^x \cos x \, dx$$
 얘도 다시 부분적분으로 풀어야돼

$$\int e^x \cos x \, dx$$
 : 지 삼 다 로 $v' = e^x$ (지수함수), $v = e^x$ $u = \cos x$ (삼각함수), $u' = -\sin x$ = (원래 그놈) $-\int ($ 반대되는놈 $) = e^x \cos x + \int e^x \sin x \, dx$

$$\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx = e^x \sin x - (e^x \cos x + \int e^x \sin x \, dx)$$
$$= e^x (\sin x - \cos x) - \int e^x \sin x \, dx$$

위 식을 정리 하면
$$2\int e^x \sin x \, dx = e^x (\sin x - \cos x)$$
이 되니깐

$$\therefore \int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + C$$

맞는지 검산하려면 $\frac{1}{2}e^x(\sin x - \cos x)$ 미분해봐 $e^x\sin x$ 나오나

$$\left(\frac{1}{2}e^{x}(\sin x - \cos x)\right)' = \frac{1}{2}e^{x}(\cos x + \sin x + \sin x - \cos x) = e^{x}\sin x$$

$$cf) \int e^x \cos x \, dx = \frac{1}{2} e^x \left(\sin x + \cos x \right) + C$$

≪ 부분적분 속성법 ≫

 $\Rightarrow \int (\text{다항 함수}) \times (\text{삼각 함수}) \ \ \cup \ \int (\text{다항 함수}) \times (\text{지수 함수}) \ \ \mathrm{만}$ 가능 한건 데, 부분 적분 일일히 안해도 바로 바로 답을 내는 공식이야ㅎ 우선 다항함수를 f(x)라 하고 삼각함수나 지수함수를 g(x)라 한다면 g(x)를 n번 적분한것을 $g_n(x)$ 라고 할게 (n은 자연수)

$$\int f(x) g(x) dx = (f(x)g_1(x)) - (f'(x) g_2(x)) + (f''(x)g_3(x)) - (f'''(x)g_4(x)) + (f''''(x)g_5(x)) - \bullet$$

이것을 f(x)가 상수항이 나올때 까지 하는거야 상수항을 미분하면 0 이니깐 다음 항은 구할 필요가 없지ㅎ

$$ex$$
) $\int x^2 \cos x \, dx = x^2 (\sin x) - 2x (-\cos x) + 2 (-\sin x) + C$

$$ex) \int x^3 e^x dx = x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + C$$
$$= (x^3 - 3x^2 + 6x - 6)e^x + C$$

위 지면 강의 파일의 저작권은 오르비 인터넷 수학 강의 강사 안녕맨에게 있습니다

안녕맨의 동의없이 무단 복제, 배포, 사용은 철저하게 법적 책임을 지게 됩니다