Al Che In

H-KHEM

알케인 3권 본문 (맛보기)

3-A. 물의 자동 이온화

개정화학-물의 자동이온화 단원의 핵심은 '스킬'이 아닌, '실수 없는 스피드'에 있다. 4.물농도 단원을 잘 익혀두고, 15장에 있는 pH 관련 공식들만 잘 암기하고 응용하면 쉬운 문제들이기 때문이다. 추가된 지 얼마 안 된 단원인 만큼 기출문제 수가 적다. 4.물농도+ pH공식+ K_w 공식 이 세 가지만 확실히 잡고 풀자. 그리고 사고를 단단히 훈련시켜, 실수 없이 빠르게 계산하는 방법을 훈련해보도록 하자.

 $([H_3O^+]$ 가 $[H^+]$ 보다 더 적절한 표현이지만, 표기상의 편의를 위해 $[H^+]$ 를 이용하겠다.)

〈개념구분 훈련〉

물의 자동 이온화 단원은 정확한 계산도 중요하지만 pH, $[H_3O^+]$, 산성의 개념을 구분하고 유연하게 적용하는 것이 중요하다. 그러므로 문제를 푸는 것을 연습하기에 앞서 몇 가지 개념 구분을 위한 사고도구들을 정리해보자.

```
    K<sub>w</sub> = 10<sup>-14</sup>
    ⇔ [H<sup>+</sup>] × [OH<sup>-</sup>] = 10<sup>-14</sup>
    ⇔ pH + pOH = 14
    - 'pH와 pOH는 더하면 14', '[H<sub>3</sub>O<sup>+</sup>]와 [OH<sup>-</sup>]는 곱하면 (10의) -14(승)'라고 생각하자.
```

```
[X] \Leftrightarrow pX \supseteq \exists 7

[H^+] = a \times 10^{-b} M

\Leftrightarrow pH = b - \log a
\begin{vmatrix}
[OH^-] = a \times 10^{-b} M \\
\Leftrightarrow pOH = b - \log a
\end{vmatrix}
```

- 염기성 용액은 pOH가 나오면 OH^- 로, 산성용액은 H^+ 로 자동으로 쓰는 습관을 기르도록 하자.
- pH와 [OH⁻]가 클수록 염기성이 세고, pOH와 [H⁺]가 클수록 산성이 세다고 간주하자.
 응용1) pH↑ ⇔ [H⁺]↓ ⇔ [OH⁻]↑ ⇔ 염기성↑ ⇔ pOH↓
 pOH↑ ⇔ [OH⁻]↓ ⇔ [H⁺]↑ ⇔ 산성↑ ⇔ pH↓
 응용2) 염기성 = [OH⁻] > [H⁺] ⇔ [OH⁻] ↑ ⇔ [H⁺] ↑
 산성 = [H⁺] > [OH⁻] ⇔ [OH⁻] ↓ ⇔ [H⁺] ↑

산성/[H⁺]/pH를 구분하는 사고를 충분히 연습했다면, 이번에는 몰농도와 pH의 계산에 익숙해져보자. 소수⇔분수⇔몰농도⇔pH 변환과 지수의 계산(음수 지수)에 능통해야 한다. 그리고 이 계산훈련 또한 사고를 정확하게 훈 련시켜 줘야 오개념 없이 자유자재로 변형이 가능해지므로, 문장 하나하나 정확히 이해하고 넘어가자.

1.

[2020년 4월 학평 10번]

표는 25°C에서 수용액 (가), (나)의 H₃O⁺의 몰 농도를 나 표는 25°C에서 3가지 수용액 (가)~(다)에 대한 자료이다. 타낸 것이다.

수용액	(가)	(나)
[H ₃ O ⁺]	1.0×10 ⁻⁵ M	1.0×10 ⁻⁹ M

25℃에서 (나)가 (가)보다 큰 값을 갖는 것만을 〈보기〉에 고른 것은? (단, 온도는 25℃로 일정하고, 25℃에서 물 서 있는 대로 고른 것은?

----- 〈보기〉 ·

- \neg . 물의 이온화 상수 (K_w)
- L. 수소 이온 농도 지수(pH)
- □. OH⁻의 몰 농도([OH⁻])

① 7 ② L ③ 7, □ ④ L, □ ⑤ 7, L, □

2.

[2021학년도 9월 모평 14번]

수용액	(가)	(나)	(다)
[H ₃ O ⁺]:[OH ⁻]	1:10 ²	1:1	10 ² :1

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 의 이온화 상수(K_w)는 1×10^{-14} 이다.)

---- 〈보기〉 -

- ㄱ. (나)는 중성이다.
- L. (다)의 pH는 5.0이다.
- □. [OH⁻]는 (가): (다)=10⁴: 1이다.

① 7 ② L ③ 7, □ ④ L, □ ⑤ 7, L, □

 $[*]K_w$ 는 온도에 의해서만 변할 수 있는 값이다. *중성용액은 항상 $[H_3O^+] = [OH^-]$ 이다.

[2020년 3월 학평 18번]

표는 25℃에서 3가지 수용액에 대한 자료이다.

수용액	(가)	(나)	(다)
рН	4	5	8
부피(mL)	100	500	500

(가) $^{\sim}$ (다)에 대한 옳은 설명만을 $\langle \pm 1 \rangle$ 에서 있는 대로 고른 것은? (단, 25 $^{\sim}$ 에서 H_2 O의 이온화 상수(K_w)는 1.0×10^{-14} 이다.) [3점]

----- 〈보기〉 ----

- ㄱ. 산성 수용액은 2가지이다.
- L. 수용액 속 H₃O⁺의 양(mol)은 (가)가 (나)의 10 배이다.
- ㄷ. (다)에서 $\frac{\mathrm{[OH^{-}]}}{\mathrm{[H_{3}O^{+}]}}$ =100이다.
- ① ¬ ② \bot ③ ¬, \sqsubset ④ \bot , \sqsubset ⑤ ¬, \bot , \sqsubset

〈실전계산 훈련〉

• 부피n배 훈련

(염기성 용액) 부피가 10^{-n} 배 \Leftrightarrow (OH이온) 몰농도 10^{n} 배 \Leftrightarrow pH +n, pOH -n (산성 용액) 부피가 10^{-n} 배 \Leftrightarrow (H이온) 몰농도 10^{n} 배 \Leftrightarrow pH -n, pOH +n

-염기성 용액의 부피가 줄어들면, 염기성은 증가한다. 따라서 pH는 증가하고, pOH는 감소한다.

단순히 암기해서 속도 올리지 말고, '사고과정'을 훈련시키자.

ex) (산성용액) 부피가 ()배 ⇔ [H +] ()배 ⇔ pH +3, pOH ()

ex) 어떤 용액이 묽어졌더니 pH가 증가했다. 이 용액의 액성은 무엇인가?

• $\frac{[H^+]}{[OH^-]}$ 의 값이 주어진 경우

 $-[H^+] \times [OH^-] = 10^{-14}$ 를 이용하자. 두 식을 곱하면 $[H^+]$ 의 농도를 구할 수 있다. 나눠서 $[OH^-]$ 를 구하거나, 방금 구한 $[H^+]$ 의 농도를 이용해서 14가 되도록 맞춰줄 수 있다. 둘 중 본인이 편한 방법을 이용하면 된다.

ex1)
$$\frac{[\mathrm{H}^{+}]}{[\mathrm{OH}^{-}]} = 10^{a}$$
 이면, $([\mathrm{H}^{+}])^{2} = ($), \therefore pH= $10^{(-)}$, pOH= $10^{(-)}$

ex2)
$$\frac{[OH^{-}]}{[H^{+}]} = 10^{a} \text{ OlB, } ([H^{+}])^{2} = ($$
), $\therefore \text{ pH} = 10^{(-)}, \text{ pOH} = 10^{(-)}$

- 수용액 간의 비교-수치비교문제
- -공통부분인 수용액의 pH를 7 ($[H^{+}] = 10^{-7}$)로 잡고 푼다.

ex) 다음 조건을 보고 물음에 답하시오. (2021 수능특강 p.161#8 변형)

pOH는 (가)가 (나)보다 3만큼 작다.

[H⁺]는 (나)가 (다)의 10⁻²배이다.

[H₃O⁺]는 (가)가 (다)의 몇 배인가?

⇒공통부분은 (나) 수용액이므로 이 수용액을 중성(pH7) 이라고 잡고 풀면 아주 쉽게 풀린다.

4.

[2021학년도 6월 모평 14번]

그림 $(7)^{\sim}$ (다)는 물 $(H_2O(l))$, 수산화 나트륨 수용액 (NaOH(aq)), 염산(HCI(aq))을 각각 나타낸 것이다.

(가) (나) (다)

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 혼합 용액의 부피는 혼합 전 물 또는 용액의 부피의 합과 같고, 물과 용액의 온도는 25°C로 일정하며, 25°C에서 물의 이온화 상수 (K_w) 는 1×10^{-14} 이다.)

---- 〈보기〉 --

- ㄱ. (가)에서 [H₃O⁺]=[OH⁻]이다.
- L. (나)에서 [OH⁻]=1×10⁻⁴M이다.
- c. (가)와 (다)를 모두 혼합한 수용액의 pH=5이다.

① 7 ② \sqsubset ③ 7, \llcorner ④ \llcorner , \sqsubset ⑤ 7, \llcorner , \sqsubset

^{*}알케인 1-C의 용액희석문제를 떠올려보자.

- 수용액 간의 비교-단순대소비교문제
- -'단순'대소비교라고 해서 '단순'하진 않다. 문제를 꼬아놓고 대소를 비교하라고 하기 때문이다. 대소관계가 꼬여있을 때는 무조건 수직선을 이용해서 풀자.
- -pH와 pOH를 변환하여 수직선 위에 나타내고 싶으면, 7을 기준으로 대칭시키면 된다.

ex) ㄱ,ㄴ,ㄷ 중 옳은 것을 고르시오. (2020 수능특강 p.166 #10 변형)				
(가)의 pOH < pH				
(나)의 pH < (가)의 pOH < (다)의 pH < (라)의 pOH				
ㄱ. 두 번째로 염기성이 강한 용액은 (라)이다.				
ㄴ. (가)는 염기성이다.				
ㄷ. [OH ¯]는 (나)>(라)이다.				
⇒우선, (가)의 pH가 pOH보다 크므로, (가)는 염기	기성이다.			
([개념구분훈련]-pH의 크기는 염기성과 비례함)				
⇒(가)의 pOH와 비교해줘야 하므로, pOH 수직선을	을 그린 후, (가)를 표시하자.			
(pOH↓) (フト)	7 (pOH↑)			
⇒먼저, pH와 pOH를 구분하지 않고 수직선에 표시	시한다. (어차피 (가)를 제외한 수용액들은 대소관계만 비교하면			
되기 때문에 염기성인지 산성인지 판단할 필요가 없음	음. 대소관계만 드러나게 대략적으로 찍자.)			
(pOH↓) (나) (가) (다) (라)	7 (pOH↑)			
⇒pH로 제시되어 있던 용액은 모두 7에 대칭 시켜준다.				
(pOH↓) (가) (라)	7 (다) (나) (pOH↑)			

'정확하게 값을 구할 수 없는' 문제들은, 비교만 하면 된다. 자신이 정량 비교를 해야 할지, 정성 비교를 해야 할지 문제 선지들을 보고 잘 구분해서 불필요하게 시간을 낭비하지 말자.

자료 분석보다는 빠르고 정확하게 비교/계산하는 연습을 하자. 추가된 지 얼마 안 된 단원이기 때문에 기출문제가 많이 없는 만큼 위의 내용들을 기출과 수특, 그리고 수완에 적용시키면서 반복적으로 풀어보아야 한다. 또한 어렵지 않은 문제들인 만큼 실수하지 않도록 주의하자.

• 물의 자동이온화 단원을 위한 몰농도계산훈련

1. 기본형

$$aM \times bL = ab mol$$

$$cM \times dmL = cM \times \frac{d}{1000}L = \frac{cd}{1000}mol = cd \times 10^{-3}mol = cd mmol$$

(용액의 부피가 보통 mL 단위로 제시되기 때문에 mmol 단위를 알아두면 편리하다.)

2-1. n배형 : 약분하기

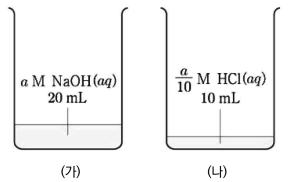
ex) 500mL, 0.02M 에 들어있는 용질의 몰수는 1L, 0.5M에 들어있는 용질 몰수의 0.02배이다. (o, x)

 \Rightarrow 500(mL)×0.02(M) = 1000(mL)×0.5(M)×0.02(ℍ)

전부 계산하고 있을 필요 없다. 10의 단위로 먼저 약분한 후 계산하면 훨씬 빨리 풀 수 있다. 혹은 0.5를 $\frac{1}{2}$ 로 바꿔서 곱해주면 더 쉽게 약분되기도 한다. 뭐가 됐던, 일일이 계산하는 것만 하지말자.

2-2. n배형 : 몰수/부피 통일하기

ex) 500mL, 0.02M 에 들어있는 용질의 몰수는 1L, 0.5M에 들어있는 용질 몰수의 0.02배이다. (o, x)

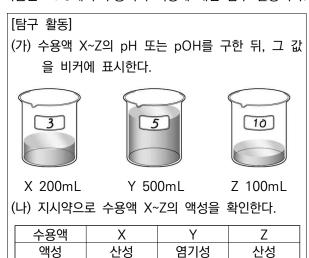

⇒용질 몰수가 일정하도록 부피를 통일시켜보자.1L에 맞춰보자.

 $imes rac{1}{2}$ $500 {
m mL} \stackrel{ imes 2}{\longrightarrow} 1 {
m L}$ 가 되면 $0.02 {
m M} \stackrel{ imes 0.01}{\longrightarrow} 0.01 {
m M}$ 가 되어야 용질의 몰수가 같아진다. 이제 몰농도만 비교해주면 된다. 쉽다.

5.

[2021학년도 수능 15번]

그림 (가)와 (나)는 수산화 나트륨 수용액(NaOH(aq))과 다음은 25℃에서 수용액의 액성에 대한 탐구 활동이다. 염산(HCI(aq))을 각각 나타낸 것이다. (가)에서 =1×10¹²이다.


이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 온도는 25℃로 일정하며, 25℃에서 물의 이온화 상수 (K_w) 는 1×10^{-14} 이다.) [3점]

----- 〈보기〉

- ㄱ. a=0.2이다.
- ∟. <u>(가)의 pH</u> }6이다.
- c. (나)에 물을 넣어 100mL로 만든 HCI(aq)에서 -=1×10¹⁰이다.
- 1 7 2 L 3 C 4 7, L 5 L, C

6.

[2020년 7월 학평 12번]

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 25° 에서 물의 이온화 상수 (K_w) 는 1×10⁻¹⁴이다.)

산성

---- 〈보기〉 ----

- ㄱ. (가)에서 pH로 표시된 수용액은 1가지이다.
- L. H₃O⁺의 몰 농도는 X가 Y의 100배이다.
- □. H₃O⁺의 양(몰)은 X가 Z의 10배이다.
- ① 7 ② L ③ 7, □ ④ L, □ ⑤ 7, L, □

^{*}용액의 액성에 맞는 용질로 농도를 나타내야 한다. *물농도의 비교인지, 몰수의 비교인지 꼭 확인하자.

7. [2020년 10월 학평 12번] 표는 25℃에서 수용액 (가)~(다)에 대한 자료이다.

수용액	(가)	(나)	(다)
рН	3	5	10
부피(mL)	50	100	200

(가)~(다)에 대한 옳은 설명만을 $\langle \pm 1 \rangle$ 에서 있는 대로 고 른 것은? (단, 25° C에서 물의 이온화 상수 (K_w) 는 1×10^{-14} 이다.) [3점]

----- 〈보기〉 --

- ㄱ. 산성 수용액은 2가지이다.
- ∟. (다)에서 [OH⁻]=1×10⁻⁴M이다.
- □. H₃O⁺의 양(mol)은 (가)가 (나)의 50배이다.

① 7 ② \sqsubset ③ 7, \llcorner ④ \llcorner , \sqsubset ⑤ 7, \llcorner , \sqsubset

- pH,pOH는 자연수 단위로 ± 1 , $[H^+]$, $[OH^-]$ 는 10의 n제곱단위로 $\times/\div 10$ 이 되어야 정확한 값을 계산할 수 있다.
- $-[H^+]$, $[OH^-]$ 가 2배, 3배 등으로 n배 되면, '정확한' pH값을 구할 수 없다. (log값이 주어지지 않은이상 못 구한다. 그러나 화학시험에서 log값을 제시할 가능성은 아마 0에 수렴한다.)
- -따라서 문제에 $[H^+]$, $[OH^-]$, 부피가 n배 된 용액이 등장한다면, 비교하게 되는 값이 반드시 존재할 것이다. 비교대 상과 어떤 관계에 있는지 파악하는 연습을 하도록 하자.
- $-[H^+]$, $[OH^-]$, 부피가 n배 된 용액을 주고, pH를 묻는 문제가 나올 가능성이 있다. 첫 번째 -에서 말했듯이, 로그 값을 제시하지 않는 이상 **절대로** pH계산을 할 수 없으므로, 높은 확률로 틀린 선지일 것이다.

수용액	용질의 종류	용액의 부피	용액의 농도	рН
(가)	NaOH	3L	0.02M	X
(나)	HC1	2L	0.1M	У
(다)	NaOH	6L	0.01M	Z

ㄱ~ㅂ 중, 값을 '정확히'구할 수 있는 것만을 모두 고르시오. (만약 구할 수 있다면, 값이 얼마인지 쓰시오.)

- $\neg . \frac{x}{2}$
- $L. \frac{Z}{V}$
- \sqsubset . $\frac{y}{x}$
- \exists . X-Z
- \Box . x + y
- **н.** *z* у

 \Rightarrow x = 14 - (2 - log2) = 12 + log2, y = 1, z = 14 - (2) = 12

(x와 z는 왜 14에서 뺀 건지 생각해보자.) $((\gamma H - \overline{E}) = PH + \overline{E})$ ($(x) + \overline{E}$)의 $(x) + \overline{E}$ ((x

ex2)

수용액	용질의 종류	용액의 부피	용액의 농도	рН
(가)	NaOH	2V(L)	0.02M	X
(나)	HC1	2V(L)	0.2M	У
(다)	NaOH	1V(L)	0.02M	Z

¬~ㅂ 중, 값을 '정확히' 구할 수 있는 것만을 모두 고르시오. (만약 구할 수 있다면, 값이 얼마인지 쓰시오.)

- $\neg. \ \frac{x}{z}$
- \vdash . $\frac{z}{y}$
- \Box . $\frac{y}{x}$
- \exists . X Z
- \Box . x + y
- **н.** z-у

 \Rightarrow 몇 가지 특이사항이 있다. \neg 과 ㄹ에 주목해서 풀어보자. 특히, \neg 의 식이 갖는 의미를 x와z의 관계를 통해 파악해보자. \log 를 이용하면 구할 수 있는 값인지 없는 값인지 구분하기 쉬워진다.

- 그 외에도, 문제를 풀 때 필요한 몇 가지 요령들이 있다. 아래의 내용들도 확실히 숙지하고 넘어가도록 하자.
 - 액체를 변화시킬 때, 정확한 값을 구할 수 없게 만든 문제들이 있다. 이 문제의 출제의도는 '정확한 값을 구하기'가 아니다. 보기에 제시되어있는 **기준점을 분석한 후 비교**만 하면 된다.

ex) 기. 수용액 (가)의 [H⁺]농도는 1.0×10^{-7} M 보다 크다.

- \Rightarrow $[H^+]$ 의 농도를 직접 구할 필요 없이, 기준점인 ' 1.0×10^{-7} '만 분석하자. 즉, ' $[H^+]$ 가 1.0×10^{-7} M보다 큰 액체의 특징'을 파악하면 된다는 뜻이다.
- HCl/NaOH를 희석시킨 수용액에 들어 있는 $[Cl^-]$ 과 $[Na^+]$ 의 농도 (단, HCl/NaOH를 단독으로 희석시킨 용액. 중화반응이 일어난 수용액은 해당 x)
- -H와 Cl은 1:1로 분해되므로, [Cl-]=[H+]

같은 맥락에서, [Na⁺]=[OH⁻]

- <u>A</u> 비교
- -A와 B의 값을 직접 구할 수 없는 문제의 경우, 보통 A와 B 둘 다 증가/감소하는 경우는 거의 없다. 따라서 A나 B 둘 중 하나의 대소만 비교해도 무방하다.
- -단, A와 B의 값을 직접 구할 수 있는 문제들은 반드시 직접 구해서 값을 확인해야 한다. (n가 양이온, n가 음이온 등에 서 n 값을 구하는 문제, $\frac{A}{B}$ 가 얼마인지 구하라고 명시되어있는 문제, $\frac{A}{B}$ 의 값이 정수비율로 나누어 떨어지는 문제 등)
- 들어있는 용질의 양 ≠ 존재하는 이온의 양
- -반드시 선지를 정확하게 체크하고 넘어가자. NaOH 1몰을 물에 희석시키면, 들어있는 용질의 양은 1몰이지만 존재하는 이온의 양은 2배가 되어 2몰이 된다.
- 물에는 [H +] = 10^{-7} , [OH -] = 10^{-7} 의 이온이 존재한다.
- -매우 적은 양의 이온이므로 전기가 잘 통하지 않는다.
- -이온이 없어서 전기가 안통하는 것이 아님!!
- 물의 자동이온화 반응은 가역반응이다.

알케인 3권 해설 (맛보기)

3-A. 물의 자동 이온화

1. ④

[2020년 4월 학평 10번]

- 고. 물의 이온화 상수는 항상 일정하다. (+: 물의 이온 화 상수는 온도에 의해서만 변하는 값이다.)
- L. (가)의 pH는 5, (나)의 pH는 9이다.
- □. [H₃O⁺]가 (가) 〉 (나). ∴ [OH⁻]는 (나) 〉 (가)이
- 다. (∵[H₃O ⁺][OH ⁻]의 값이 일정하므로)

2. ①

[2021학년도 9월 모평 14번]

- (가) : $[H_3O^+]=k$ 라고 가정한다면, 표에서 (가) 수용 액의 비율에 의해서 $[OH^-]=100k$ 이다. $K_w=[H_3O^+][OH^-]=k\times 100k=10^{-14}$ 이므로, $k=10^{-8}(=[H_3O^+])$ 이다.
- (나) : 두 이온이 1:1로 존재하므로 두 이온 모두 각각 $[\mathrm{H_3O^+}] = [\mathrm{OH^-}] = 10^{-7}$ 의 농도만큼 존재한 다.
- (다) : (가)의 정반대 상황이므로 $[H_3O^+]$ 와 $[OH^-]$ 의 값이 (가)의 상황과 반대이다. 따라서 $[OH^-] = k = 10^{-8} \text{OIC}.$
- $_{\rm -L.}$ (다)에서 $[{
 m H_3O}^+]$ = 10^{-6} 이므로 틀렸다. (pH = 6)
- \Box . (가) : (다) = 10^{-6} : 10^{-8} = 100 : 1

3. ③

[2020년 3월 학평 18번]

ㄱ. pH만 보고도 판단 가능하다.

- - (7): $[H_3O^+] = 10^{-14}$
 - **(L)**: $[H_3O^+] = 10^{-5}$
 - .. (가)의 $H_3O^+ = 10^{-4}M \times 100mL$ (나)의 $H_3O^+ = 10^{-5}M \times 500mL$

 $10^{-4} \times 100 : 10^{-5} \times 500 = 2 : 1$

ㄷ. pH = 80[므로 $[H_3O^+] = 10^{-8}$ 이다. 따라서 $[OH^-] = 10^{-6}$ 이므로 $\frac{[OH^-]}{[H_3O^+]} = \frac{10^{-6}}{10^{-8}} = 100$ 이다.

4. ③

[2021학년도 6월 모평 14번]

- ㄱ. pH = 7이므로 중성용액이다.
- □. pOH = 14 pH = 4, ∴ [OH □] = 10^{-4}
- ㄷ. (다) HCl의 농도 = 수용액의 $[H_3O^+]$ 농도 = $10^{-3}M$
- (다) + (가)를 하면 용질의 양은 그대로, 부피는 $10 {\rm mL} \! \to \! 100 {\rm mL}$ 가 되어 $10 {\rm mL} \! \to \! 100 {\rm mL}$ 가 되어 $10 {\rm mL} \! \to \! 100 {\rm mL}$ 가 된다.
- : $[H_3O^+] = 10^{-3} \times \frac{1}{10} = 10^{-4}M$, pH = 4

5. ②

[2021학년도 수능 15번] 발문부터보면,

$$\frac{[{\rm OH}^{\,-}]}{[{\rm H}_3{\rm O}^{\,+}]} = 10^{-\,12},\,[{\rm OH}^{\,-}][{\rm H}_3{\rm O}^{\,+}] = 10^{-\,14}$$

를 통해 $[H_3O^+]$ 와 $[OH^-]$ 의 값을 계산할 수 있다. 구해주면, $[OH^-]=10^{-1}, [H_3O^+]=10^{-13}$ 임을 얻을 수있다.

ㄱ. NaOH 이므로 (염기성 용액) 농도는 OH^- 에 대해 나타낸다.

$$\therefore$$
 aM = [OH $^{-}$] = 10^{-1} M

(L):
$$[H_3O^+] = \frac{a}{10}M = 10^{-2}M$$
, $\therefore pH = 2$

ㄷ. 용액이 10배 희석되므로 농도는 $\frac{1}{10}$ 배가 된다. 따라서 $[\mathrm{H_3O}^+]=10^{-2}\mathrm{M}\times\frac{1}{10}=10^{-3}\mathrm{M}$ 가 되고, $[\mathrm{H_3O}^+]=[\mathrm{Cl}^-]$ 이므로 $[\mathrm{Cl}^-]$ 의 값도 10^{-3} 이 된

$$[OH^{-}] = 10^{-14} \div [H_3O^{+}] = 10^{-11}$$

$$\therefore \frac{[Cl^-]}{[OH^-]} = \frac{10^{-3}}{10^{-11}} = 10^8$$

6. ①

[2020년 7월 학평 12번]

자료부터 분석을 해보자.

X : pH = 3(:: 산성이므로)

Y: pOH = 5(: 염기성이므로)

Z : pOH = 10(:: 산성이므로)

 $L. X : [H_3O^+] = 10^{-3}$

Y:
$$pH = 9(: pH = 14 - pOH)$$
:

$$[H_3O^+] = 10^{-9}$$

□. X : 10^{-3} M × 200mL

 $Z: 10^{-4} \mathrm{M} \times 100 \mathrm{mL}$, X에 '2' 숫자가 들어갔으므로 10배는 당연히 불가능하다. (계산을 빨리 하는 것도 좋지만, 전반적인 숫자에 대한 감각을 키우는 것 또한 중요하다.)

7. ③

[2020년 10월 학평 12번]

- □ pH = 10, ∴ pOH = 4 → [OH] = 10⁻⁴
 이 정도의 문제는 이제 눈으로 푸는 것이 가능해져
 야 한다.
- □ (가) 10⁻³M × 50mL, (나) 10⁻¹⁰ × 200mL
 (가)를 50배하면 10⁻³ × 2500이 되는데, 절대 10⁻¹⁰ × 200이랑 같을 수가 없다.(∵25→20)
 10을 나누거나 곱해준다 해도 불가능하다. (계산을 빨리 하는 것도 좋지만, 전반적인 숫자에 대한 감각을 키우는 것 또한 중요하다.)